摘 要广义逆矩阵是逆矩阵的推广,广义逆矩阵有15种,常用的有五种,即减号逆、自反广义逆、最小范数广义逆、最小二乘广义逆、加号逆。本文首先总结了这5种广义逆的存在性和唯一性。通过减号逆的定义以及相关证明,可以得出减号逆存在且不唯一。通过运用最大秩分解法以及矩阵左逆和右逆的运用,可以得出自反广义逆存在且不唯一。通过最小范数广义逆和最小二乘广义逆的定义以及其构造,可知它们的组成中均含有减号逆,故可得最小范数广义逆和最小二乘广义逆存在且不唯一。运用最大秩分解可得到加号逆的存在性和唯一性。然后以此为基础,我们讨论了以 为出发点增设条件的广义逆矩阵 , , 的存在性及唯一性。我们通过加号逆的存在性证明了广义逆矩阵 , , 的存在性。通过不同的证明手段证明了 , 的不唯一性和 的唯一性。最后,我们讨论了广义逆矩阵在求解线性方程组方面的有效应用。89620
Abstract Generalized inverse matrices are a generalization of inverse matrices。 There are 15 different kinds of generalized inverse matrices。 The most widely used are 5 kinds: minus inverse, reflexive generalized inverse, minimum norm generalized inverse, least squares generalized inverse and plus inverse。 At first, we make a summary about the existence and uniqueness of these 5 kinds of generalized inverse matrices。 By the definition of the inverse minus, it can be concluded that a minus inverse exists and is not unique。 By using the maximum rank decomposition method and the left and Right inverses of a matrix, it can be obtained that a reflexive generalized inverses exists and is not unique as well。 Both minimum norm generalized inverse and least squares generalized inverses are minus inverses。 They are also exist and are not unique。 By using the maximum rank decomposition method, it can be obtained that a plus inverse exists and is unique。 Based on the existence of a plus inverse, we prove that the the generalized inverse matrix , , all exist。 Then, by means of different proofs, we prove that , are not unique, but is unique。 At last, we show how generalized inverse matrices are applied in solving linear equations。
毕业论文关键词:广义逆矩阵; 最大秩分解; 线性方程组
Keyword: Generalized inverse matrix; maximum rank decomposition: linear equations
目录
一、 引言 5
二、 正文 5
2。1广义逆矩阵的的基本概念 5
2。1减号逆 6
2。2自反广义逆 9
2。2。1最大秩矩阵来自优Y尔L论W文Q网wWw.YouERw.com 加QQ7520~18766 的左逆和右逆 10
2。2。2自反广义逆矩阵的最大秩分解法 11
2。3最小范数广义逆 12
2。4最小二乘广义逆 13
2。5加号逆 14
2。6广义逆A{1,2,3} 15
2。7广义逆A{1,2,4} 16
2。8广义逆A{1,3,4} 17
2。9 广义逆的应用 18
2。9。1 线性方程组的求解问题的求法 18
2。9。2相容方程组的通解与减号逆 18
2。9。3相容方程组的最小范数解与最小范数广义逆