摘要线性代数方程组的迭代方法是一种极限方法是解大型稀疏矩阵方程组的有效方法。它的基本思想是用某种极限过程去逐步逼近线性方程组的精确解,是一种逐步逼近的方法。迭代法将n阶线性方程组变形为某种迭代公式。对于任意给定的迭代初始值,由某一迭代格式便可生成一个向量序列,我们的目的是求解方程组的解,因此我们会希望向量序列的极限逼近方程组的解。
本文介绍了Shanks变换的定义及形式,并使用Shanks变换分析讨论了线性方程组的迭代求解问题.在一定条件下将原本发散的迭代序列改变为收敛序列,并加速求解.本文还讨论了Shanks变换在级数加速求解的应用.33226
毕业论文关键词: 线性方程组 级数 迭代 加速 收敛 Shanks变换
Shanks Transformation and its Application
Abstract
The iterative method of linear algebraic equations is an extreme method is an effective method for the solution of large sparse matrix equation    s. The basic idea is to a certain limit process to gradually approach the exact solution of linear equations, a step-by-step approximation method. The iterative method will be iterative formula for a deformation of n linear equations. For any given iteration of the initial value, by an iterative scheme can generate a vector sequence, our aim is the solution to solving the equations, so we will want to limit approximation the solution of equations of vector sequences.
This paper introduced the definition and form of the Shanks Transformation, The iterative method of linear equations is discussed and analysed by using Shanks Transformation. The pergent iterative sequence is changed into a convergent one under some conditions, and accelerated the solutions. The application of the Shanks Transformation in the acceleration of the solution of the series has been studied.
Key words: linear equations, series, iteration, acceleration, convergence, Shanks Transformation   
目录
1    Shanks变换介绍    1
1.1    Shanks变换简介    1
1.2    Shanks变换举例    1
1.3    Shanks变换推导    2
2    Shanks变换的应用    3
2.1    Shanks变换在线性方程组迭代解法的收敛与加速中的应用    3
2.1.1数值例子    9
2.2    Shanks变换在级数收敛中的加速作用    12
2.2.1    Shanks变换在Floquet矢量模级数的混合加速算法中的应用    12
2.2.2    数值算例    14
2.2.3  Shanks变换在加速高速电路中周期结构电容参数计算中的作用    16
2.2.3    算例    16
3    结论    18
1    Shanks变换介绍
1.1    Shanks变换简介[1-3]
在数值分析中,Shanks变换是一种增加数列收敛速率的非线性加速方法[4].该方法是以在1955年重新发现该数列变换的Daniel Shanks的名字来命名的,但其最初是由R.schmidt在1941提出并且发表的.
对于一个数列 来说,级数
 
的值是确定的,我们把部分和 定义为
 
并且构成了一个新的数列 .当级数收敛时, 将会趋近于n趋向于无穷大时的极限A,我们把数列 的Shanks变换S( )定义为
 
并且构成了一个新的数列,数列S( )总是比数列 更快的收敛,通过计算 , 等等来重复的使用Shanks变换将会使收敛进一步加快.
Shanks变换是一种加速收敛技术,应用于级数的处理,使得收敛更快.也应用于微分方程解的处理.
1.2    Shanks变换举例
上一篇:重大工程社会稳定风险的建模与分析初探
下一篇:高阶方程降阶问题的研究与应用

中学数学中的数学思想方法及其教学

韦达定理及其恒等式

Taylor公式及其在数学解题中应用

中学数学教学中渗透数学...

关于

圆锥曲线的性质及其应用

各类凸函数的性质及其应用

神经外科重症监护病房患...

志愿者活动的调查问卷表

AT89C52单片机的超声波测距...

中国学术生态细节考察《...

10万元能开儿童乐园吗,我...

承德市事业单位档案管理...

C#学校科研管理系统的设计

医院财务风险因素分析及管理措施【2367字】

国内外图像分割技术研究现状

公寓空调设计任务书