。解线性方程组的基本解法是德国数学家高斯提出的高斯消元法。
其基本的思想是:通过某些合法的和可逆的代数运算(称为‘初等变换’)把方程组
化简成为我们能够容易求出其解得形式[2]
。而这些变换包括:1、用一个非零的常数乘
以某一方程;2、把一个方程的倍数加到另一个方程;3、互换两个方程的位置。
假设有方程组 容易证明方程组(2.2.1)和方程组(2.2.4)同解。
因此通过这些变换后所得到的方程组与原方程组同解,即这些变换对解线性方程
组来说是合法的,是有意义的。
在线性方程组(2.2.1)中,除去代表未知量的文字外,线性方程组(2.2.1)就确定
了。并且采用什么文字来代表未知量不是实质性的。故我们可以用增广矩阵
上一篇:CPI对股票市场的影响研究+文献综述
下一篇:合理利用可再生资源的策略

浅谈中学数学函数最值问题的求解方法

基于决策树算法的篮球联赛预测

数形结合在中学数学中的...

浙江省工业企业发展的因子分析

中美小学数学课堂教学的比较

杭州历年中考三角形的题型分析

论数形结合在中学数学教育中的应用

C#学校科研管理系统的设计

医院财务风险因素分析及管理措施【2367字】

国内外图像分割技术研究现状

中国学术生态细节考察《...

10万元能开儿童乐园吗,我...

公寓空调设计任务书

志愿者活动的调查问卷表

神经外科重症监护病房患...

AT89C52单片机的超声波测距...

承德市事业单位档案管理...