毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
扩域的性质及应用+文献综述(2)
在F中适当选择H就能使F=G(H).例如,当H=F时总有F=G(H).但是为了得到F,实际上一般来说H不必取这么大.
例如,设F= G=Q,则只需取H= 就有G( )=F了。
现在假定F=G(H).因为在H中任意取定的有限个元素 后,一切形如 其中 如果令 = ,则这个域可以简记为G( )=G .它是添加有限个元素于G所得到的扩域,而F=G(H)就是一切这样的子域的并集。这一事实说明,研究G(H)可归纳为研究添加有限个元素与G所得到的域G .
设G 、F是两个域,且G F,如果F是二文的,那么就说域F是G的二次扩域.
如复数域C是实数域R上的二次扩域,而域Q( )则是有理数域Q上的二次扩域.
性质1:对任意a∈F,存在 ∈F,使a+ ∈G,a ∈G.
证明:显然单位元1∈G F,把1扩充为F的一个基1, ,则对任意a∈F存在α,β∈G,使a=α+β .
又因为F是域,所以 ∈F,于是存在A,B∈G,使 =A+B .
令 =(α+βB)-β .则 ∈F,容易验证a+ ∈G,a ∈G.
易见,这里的 扮演的角色相当于复数C上的共轭复数,因此我们不妨成为a在F上的共轭元素。
性质2:设a,b是F的任意元素,则
(1)当G的特征为2,并且存在 ∈F , G ,但是 ∈F时有 =a。
(2)在不适合(1)的条件的情形下, =a当且仅当a∈G .
证明:G的特征为2,指的是任意a∈G,a+a=2a=0.不难证明,在G的特征为2时对任意a,b∈G,a=-a, = .
任取G的一个基1, ,记 =A+B ,A,B∈F并且记a=α+β .b= . =(α+βB)-β , .
(1)在此情形下,基向量 可取 ,这样 =A∈G又因为G的特征为2.所以
共2页:
上一页
1
2
下一页
上一篇:
线性规划在运输问题中的应用
下一篇:
枯草芽孢杆菌对于水产养殖水体净化作用研究
浅谈中学数学函数最值问题的求解方法
基于决策树算法的篮球联赛预测
数形结合在中学数学中的...
浙江省工业企业发展的因子分析
中美小学数学课堂教学的比较
杭州历年中考三角形的题型分析
论数形结合在中学数学教育中的应用
10万元能开儿童乐园吗,我...
神经外科重症监护病房患...
公寓空调设计任务书
C#学校科研管理系统的设计
国内外图像分割技术研究现状
AT89C52单片机的超声波测距...
中国学术生态细节考察《...
志愿者活动的调查问卷表
承德市事业单位档案管理...
医院财务风险因素分析及管理措施【2367字】