然而密度泛函理论虽然在实际应用中取得了很大的成功,但是它一般来说并不能足够准确的预测分子能量相关的实验值。而且分子中原子数目的越多,计算值与实验值偏差就越大大,其原因就在于DFT中的固有近似。
精确交换相关泛函(XC泛函)决定了DFT计算结果的准确度,然而精确交换相关泛函是不知道的,所有的 DFT计算均使用近似交换相关泛函,这就更加扩大了计算结果的偏差,因此寻找更加精确的交换相关泛函对提高 DFT 计算精度有着重要的使命意义。这对于密度泛函理论的校正有一定的正面效果与积极意义。
参考文献
[1] 张家虎. 基于统计方法的密度泛函理论校正研究[D]. 2010,16(1):79-82.
[2] 黄斌. 密度泛函理论应用研究[D]. 2008.,11(2):55-58.
[3] 李震宇. 新材料物性的第一性原理研究[D]. 2004 ,19(1):80-83.
[4] 朱洪法.催化剂载体制备及应用技术.北京:化学工业出版社,2004,15(1):80-135-137.
[5] 邓南圣.环境光化学.北京:化学工业出版社,2003,15(1):92-93.
[6] 谭小萍.光催化氧化法净水技术的研究进展.广州大学报.2003,15(1):80-83.
[7] 戴瑛.密度泛函理论处理激发态与多重态结构研究进展.化学进展.2001,13:167 -175.
[8] 李德荣译.转化抽提脱硫新工艺.北京:石化译文社,2001,13:21-24.
[9] 李征宇.密度泛函数理论及其数值方法新进展.化学进展报.2005,17(2):192-202.
[10] 贾秀华.密度泛函数理论在催化领域的应用.石油化工报.2009,38(9):428-431.
[11] 王苹.不同光催化反应器降解有机物的性能比较.北京工商大学学报.2002,20(3):1-6.
[12] 李琳.光化学反应器.反应工程与工艺.1995,11(4):386-395.
[13] 崔玉民.光催化氧化脱除硫化物.燃料化学学报.2000,28(5):468-472.
[14] Seidl A, Gorling A, Vogl P, et al. Generalized Kohn-Sham schemes and the band-gap problem[J]. Physical Review, B, 1996, 53:3764-3774.
[15] Engel G E. Linear response and the exchange-correlation hole within a screened-exchange density functional theory[J]. Physical review letters, 1997, 78:3515-3518.
[16] Lee C, Yang W, Parr R G, et al. Development of the colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density[J]. Phys. Rev. B, 1988(38): 3098-4107.
[17] You H. P. ,Hong G.Y.,Zeng X.Q. et a1.J. Phy.Chem. Solid[J], 2000, 61: 1985-1988
[18] A E Mattsson. In pursuit of the "pine" functional[J]. Science, 2002, 298:759-760.
[19] Burke K, Gross E KU. A Guided Tour of Time-Dependent Density Functional Theory[J], In Springer Lecture Notes in Physics, 1998, 298:759-760.
[20] N Nakaoka, K Tada, S Watanabeet, et al. Partitioned Real-Space Density Functional Calculations of Bielectrode Systems under Bias Voltage and Electric Field[J]. Physical review letters, 2001, 86:540-543.
[21] W Kohn. Current-dependent exchange-correlation potential for dynamical linear response theory[J]. Physical review letters, 1996, 76:3168-3171.
[22] S C Watson, E A Carter. Linear-scaling parallel algorithms for the first principles treatment of metals[J]. Computer physics communications, 2000, 128:67-92.
[23] Stoll H, Pavlidou C M E, Preuss H. On the calculation of correlation energies in the spin-density functional formalism[J]. Theoretical Chemistry Accounts, 1978, 49:143-149.
[24] J P Perdew, Zunger A. A self-interaction corrected approach to many-electron systems: Beyond the local spin density approximation[J]. Physical Review B, 1981, 23:5048-5079.
[25] J P Perdew, Kurth S, Zupan A, et al. Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation[J]. Physical review letters, 1999, 82:2544-2547.