摘要本文在学习GaAs光电阴极表面模型和制备技术基础上,利多信息量测控系统,进行了GaAs光电阴极Cs-O激活工艺的优化研究,分别做了两组激活对比实验,第一组实验比较了三种不同激活方法下激活过程、光谱响应以及稳定性差异,发现Cs源持续O源断续得到了灵敏度高稳定性好的光电阴极;第二组实验是在Cs源持续O源断续的激活基础上,比较了不同Cs/O比对激活过程、光谱响应以及稳定性差异的影响,发现只有合适的Cs/O才能使激活曲线对称性好、交替时间短、光电流增长幅度大。本文利用双偶极子模型来对实验现象分析并解释,认为Cs在实验过程中保持稍微过量能有利用形成性能良好的光电阴极,控制进Cs的量,以及Cs/O比例对整个激活过程、阴极灵敏度和稳定性至关重要。
关键词 激活 GaAs光电阴极 双偶极子模型 光谱响应 毕业论文设计说明书外文摘要
Title Optimization of Cs-O activation process of GaAs photocathodes
Abstract
Based on learning the GaAs surface model, using information measurement and control system, this paper performed two groups of experiments about optimization of Cs-O activation process of GaAs photocathodes .The first groups of experiments were compared three different activation methods and the activation process, spectral response and stability difference. We found that the photocathode activated in Cs source continuous and O source discontinuous has higher sensitivity, better stability, and stronger longwave response. The second group of experiments is based on Cs source continuous and O source discontinuous activation, comparing the different Cs/O ratio activation process, spectral response and stability differences of influence. We found that Only the appropriate Cs/O ratio can make the activation curve with good symmetry, alternate time short, photocurrent increased a lot. Possible mechanism was tentatively discussed with a double dipole model. And we found that a slight excess of Cs improves performance of the photocathode. We suggest that careful control of Cs quantity plays a key role in GaAs photocathode activation.
Keywords Activation GaAs photocathode Double dipole model Spectral response
目 次
1 绪论1
1.1 GaAs光电阴极概况1
1.2 GaAs光电阴极表面模型4
1.3 本论文的研究意义与主要工作6
2 负电子亲和势光电阴极制备和评估系统7
2.1 超高真空激活系统7
2.2 多信息量在线监控系统的组成9
2.3 激活软件介绍11
3 不同激活方式对GaAs光电阴极的影响研究13
3.1 不同激活方法介绍13
3.2 实验准备14
3.3 实验结果14
3.4 分析与讨论18
4 铯氧比对GaAs光电阴极激活过程的影响研究20
4.1 实验准备20
4.3 实验结果21
4.4 分析与讨论24
5 结论26
致谢27
参考文献28
1 绪论
1.1 GaAs光电阴极概况
1.1.1 GaAs光电阴极的原理与发现
外光电效应,也称光电发射,光线照射在金属表面会使其发射出电子的物理效应[1],如图1.1所示。光电效应发生的条件是入射光的频率超过金属的极限频率,光子能量减去功函数所剩下的能量将会称为发射电子的动能,方程为Ek = hν-Φ[1]。