基于问题的基本方程,建立单元节点的平衡方程(即单元刚度方程),最后借助于矩阵表示,把所有单元的刚度方程组合成整体的刚度方程,这是一组以节点物理量为未知量的线形方程组,引入边界条件求解该方程组即可。
应用。。
图 1.8有限元法基本思想
有限元的应用:新型单元的研究,例如:面向特性材料(如复合材料)的单元位移模式研究、面向几何设计的新型单元(如超单元)的研究,以及,面向物理问题的有限元建模:如有限元建模专家系统、决策支持系统、网格划分算法等。
1.3.2矩量法
矩量法是求解电磁场边界值问题中一种行之有效的数值方法。它所做的工作是将积分方程化为差分方程,或将积分方程中积分化为有限求和,从而建立代数方程组,故它的主要工作量是用计算机求解代数方程组。所以,在矩量法求解代数方程组过程中,矩阵规模的大小涉及到占用内存的多少,在很大程度上影响了计算的速度。如何尽可能的减少矩阵存储量,成为加速矩量法计算的关键。
在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二文和三文问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降文等。
1.3.3时域有限差分方法
时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。
这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式[8],通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。
在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式差分方程时随着时间步的继续计算结果也将无限制的增加。
用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。
上一篇:轻型货车汽车前后悬架的设计+文献综述
下一篇:液压通用机械手设计+CAD图纸

PLZT光驱动微位移伺服系统的设计及控制

光纤及光缆市场现状及走势分析【5927字】

展成式电化學机械光整加...

密集光波分复用系统的波...

信息熵的光學成像系统分析【2345字】

光伏电池充电器的设计

Arduinounor3激光雕刻机雕刻机设计+电路图

志愿者活动的调查问卷表

AT89C52单片机的超声波测距...

国内外图像分割技术研究现状

承德市事业单位档案管理...

中国学术生态细节考察《...

10万元能开儿童乐园吗,我...

医院财务风险因素分析及管理措施【2367字】

公寓空调设计任务书

C#学校科研管理系统的设计

神经外科重症监护病房患...