摘要:棉铃虫的寄主范围广,其幼虫具备较强的解毒代谢能力,能够降解多种植物的防御性次生物质。其中,棉铃虫可以利用与UGT41B3和UGT40D1基因产物相关的UDP-糖基转移酶(UGT)使棉花次生物质棉酚糖基化,进而进行代谢。CRISPR/Cas9 系统是最近被发现并发展的一种强有力的基因编辑工具,该系统能够在特定的基因位点引起基因组双链DNA断裂,进而利用生物的非同源末端连接和同源重组修复达到基因编辑的目的。本研究通过CRISPR/Cas9技术敲除UGT41B3和UGT40D1基因,筛选获得基因敲除纯合突变体,构建UGT41B3和UGT40D1基因敲除品系,为更好揭示这两个基因在棉铃虫对棉酚和杀虫剂解毒代谢中的作用以及明确其基因功能提供了基础。26625 毕业论文关键词:CRISPR/Cas9;棉铃虫;UDP-糖基转移酶;UGT41B3;UGT40D1
Construction of UGT41B3 and UGT40D1 knockout line in Helicoverpa armigera utilizing the CRISPR/Cas9 system
Abstract:Helicoverpa armigera has a wide host range, and its larvae have strong ability of detoxification, which could metabolize the defensive secondary metabolites from various plants. Among them, H.armigera could use UDP-Glycosyltransferase (UGT), which is related to the UGT41B3 and UGT40D1 gene products , to glycosylate the cotton secondary metabolite --- gossypol. CRISPR/Cas9 system is a powerful gene editing tool which was been discovered and developed recently, the system can lead to genomic DNA double strand breaks in specific gene loci, achieving the purpose of gene editing by biological non homologous end joining and homologous recombination repairing. In this study the UGT41B3 and UGT40D1 genes were knockouted using CRISPR/Cas9 and the UGT41B3 and UGT40D1 gene knockout lines were constructed, which can provide the basis to reveal the role of these two genes in detoxification of gossypol and insecticide in H.armigera.
Key words: CRISPR/Cas9;Helicoverpa armigera;UDP-Glycosyltransferase;UGT41B3;UGT40D1
目 录