例:设 都是数域F上的有限文线性空间V上的子空间,若子空间的和 不是直和,则V的每个向量的表示法都不唯一
证明:设V中有向量 表为 ,且唯一表出
    又设 ,则得
    但 的表示法唯一,故 。
    从而 ,即 唯一表出,所以 是直和,与假设矛盾。
引理1:设线性变换 的特征多项式为 ,它可分解成一次因式的乘积
        ,
则 可分解成不变子空间的直和
              其中 。
2.2线性空间的同构
同构定义:实数域 上线性空间 与 称为同构,如果由 到 有一个双射 ,满足
  这里 ,这样的映射 称为 到 的同构映射
引理2:设 是线性空间 的一组基,在该组基下, 中的每个向量都有确定的坐标,向量的坐标可以看成 中的元素。换句话说,向量与它的坐标之间的对应就是 到 的一个同构映射。因而,数域 上任一个 文线性空间都与 同构。
上一篇:对高校教师教学评价现状的调查
下一篇:基于情绪研究中国股票市场的定价及波动性

浅谈中学数学函数最值问题的求解方法

基于决策树算法的篮球联赛预测

数形结合在中学数学中的...

浙江省工业企业发展的因子分析

中美小学数学课堂教学的比较

杭州历年中考三角形的题型分析

论数形结合在中学数学教育中的应用

10万元能开儿童乐园吗,我...

医院财务风险因素分析及管理措施【2367字】

神经外科重症监护病房患...

C#学校科研管理系统的设计

承德市事业单位档案管理...

公寓空调设计任务书

AT89C52单片机的超声波测距...

志愿者活动的调查问卷表

国内外图像分割技术研究现状

中国学术生态细节考察《...