毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
最优化在金融学中的应用+文献综述(2)
点上推广了Lagrange 条件[1]
。
实际上 A.K.Dixit 在他的著作《经济理论中的最优化方法》中浅入深出的将
最优化方法的基础一步步的展示给了我们。其中 Langrange乘子法是最为基础的,
再进一步则将Langrange 乘子称为影子价格。随着条件的增多,逐渐又引进了最
大值函数、不等式约束和凹形规划。以上概念形成了最优化方法的基础工具。
在比较熟练的掌握以上工具后,我们才能更好地理解金融学中的最优化问题。
前文中所提到的经典金融学的中心问题是金融资产的定价。但是它的基本内容没
有纳入经典经济学的一般经济均衡框架:即,这种定价不是通过考虑经济活动者
的行为以及各种经济条件来进行的,而更多地通过一部分金融资产的价格来为另
一部分的金融资产定价。其依据是这些金融资产的未来不确定性之间的依赖关系。
Markowitz 证券组合选择理论从表面上来看似乎不是定价问题。它提出的是
怎样选取证券(金融资产)组合,使得它的“收益与风险”有一种最优的平衡。
于是证券组合选择问题就归结为一个以收益率均值来刻画的、“收益”固定下的、
以收益率方差来刻画的“风险”最小问题。如果我们对上述的问题通过引进内积
结构和“正交分解”的概念,就会发现 Markowitz 问题的求解其实在本质上与“一
价定律”所导出的现行定价函数的确定是等价的[1]。
由此顺便还可导出同样作为“第一次华尔街革命”的标志的“资本资产定价
模型”。它也是Black-Scholes期权定价理论最精辟的总结。
本论文旨在将最优化在金融各领域的应用做一个比较详实的总结,以便帮助
人们更好地了解金融中的最优化方法的具体应用。
2.最优化方法
2.1 预备知识
2.1.1 n 文欧式空间的运算
首先介绍 n文空间��中的运算。设为实数,� =
1,…, n+,称��为n 文欧氏空间。令
称�1, �2,…, ��−1, ��为��中的坐标系。由 �=1
可以将� 看做上述坐标系的一个点,而��为点�在坐标轴��上的坐标, � = 1,2,…, �。
称 ��
为坐标原点(简称原点)
为方便起见,我们将��中的点
看做由原点指向点�的一个向量。这里的“向量”是数学中的向量——称为“自
由向量”,只有方向和大小,而且把该向量经过平移后得到的向量,都看做是同
一个向量,只不过向量对应的点是将该向量经过平移,使得向量的初始点在原点
共2页:
上一页
1
2
下一页
上一篇:
含参变量函数试题的求解方法
下一篇:
关系代数在数据库查询中的应用+文献综述
数形结合在中学数学中的...
论数形结合在中学数学教育中的应用
小学数学教师在学生心目中的形象
向量法在高中数学中的应用矢量法
数据分析在大数据时代的应用
数学语言表达在中学数学...
小学数学课堂提问的有效性研究
C#学校科研管理系统的设计
国内外图像分割技术研究现状
医院财务风险因素分析及管理措施【2367字】
承德市事业单位档案管理...
公寓空调设计任务书
志愿者活动的调查问卷表
AT89C52单片机的超声波测距...
10万元能开儿童乐园吗,我...
中国学术生态细节考察《...
神经外科重症监护病房患...