摘 要:微积分学可以说是一门极限的科学,而无穷小是一类特殊的极限为零的函数。本论文首先介绍了无穷小的出现在历史上的作用,归纳总结了等价无穷小在求解各类极限问题中的应用。由于初学者在运用等价无穷小的替换中总是会出现这样那样的错误,我们又对出现这些错误的根源进行了剖析,另外也将等价无穷小的应用拓展到二元函数中。10028
关键词:无穷小发展史;等价无穷小;幂指函数;变上限积分;二元函数;
毕业设计说明书(论文)外文摘要
Title Equivalent infinitesimal and it’s application in calculating limits
Abstract
Calculus can be called a subject about limitation. And infinitesimal is a special function because its limitation is zero. In this paper, we have introduced the effect of the appearance of infinitesimal in history at first. As we all know, the equivalent infinitesimal is an important tool to solve the limitation questions. So at the second, we have summarized the application of infinitesimal quantity in solving various limiting questions. Since the beginners always make this or that kind of mistakes in using the substitution of equivalent infinitesimal, we have analyzed the root of these mistakes at last. What’s more, we also have extended the infinitesimal quantity to limiting function of two variables.
Keywords: the history of infinitesimal; equivalent infinitesimal; power-exponential function; variable upper limit integral; limiting function of two variables
目 次
1 引言 1
2 第二次数学危机 1
2.1 危机的引发 2
2.2 危机的实质 4
2.3 危机的解决 4
3 无穷小以及等价无穷小 6
3.1 无穷小的定义 6
3.2 无穷小的比较 7
4 等价无穷小 7
4.1 等价无穷小的基本性质 7
4.2 常用的等价无穷小替换 8
5 等价无穷小替换在求一元函数极限中的应用 8
5.1 幂指函数中的应用 9
5.2 和式与差式中的应用 10
5.3 变上限积分中的应用 14
6 等价无穷小在求二元函数极限中的应用 17
6.1 二元函数极限的定义 17
6.2 等价无穷小替换在二元函数极限中的应用 18
结 论 21
致 谢 22
参 考 文 献 23