摘要本文主要解决露天矿产运输在一个班次内的生产计划安排。一个班次的生产计划包括:出动了几台电铲,分别都在哪些铲位上;出动了几辆卡车,分别要在哪些路线上运输,并进行了多少次。这是一个多目标规划,由于各个铲位和卸点的位置是已知的并且它们之间的路程也是已知的,卡车的速度和载重量均是已知的变量,所以只需要求出各铲位到卸点的合理运输量就可以解决以上问题。就可以将多目标规划采用分层序列法转化为非线性规划模型然后进行求解。82311
对于原则1的出动最少卡车条件,运用非线性规划的思想求解出最优运输量,在计算完总运量的最优值以后,可以用一个简单的方法求出最少卡车:在每条运输线上配备该运输线所能容纳最多的卡车数量以后,然后一辆辆的减少每一个铲位的卡车数量,直到某一个运输线不能够满足运输量,此时所需要的卡车数量就是需要的最少卡车数量,这个可以让计算机通过循环算法实现。最后求出的结果为需要7台电铲,分别在铲位(1,2,3,4,8,9,10)上,总运量为8。5217万吨。一共需要17辆卡车,每个铲位的卡车数量为(2,4,2,2,0,0,0,3,2,2)。
对于原则2,可以在原则1的基础上进行求解。在求出某一结果以后,可以将现有的卡车数量和求出的卡车数量进行对比,不断的修改条件,让现有的卡车数量等于求出的卡车数量。同时要考虑岩石产量优先原则,只需要矿石产量达到最低要求即可满足条件。最后求出的结果为,总运量8。62万吨,各个铲位需要的卡车数量为(2,6,0,3,2,0,0,3,2,2)。
毕业论文关键词:多目标规划; 组合优化; 非线性规划
Abstract This article mainly aims at the production plan arrangement of the open mineral transportation in a shift。 A shift of production planning include: dispatched several excavator, respectively in which a spade bit; dispatched several trucks, respectively, in which route transportation, and how many times。 Because each shovel and unloading point position is known and between them the journey is known, the speed of the truck and loading capacity are known to be variable, we only need to calculate the shovel to unload the reasonable transport volume can solve the above problems。
For principle of 1 dispatched at least truck conditions, using nonlinear programming algorithm on the optimal transportation volume, after calculation the total volume of the optimal value, can be used a simple method to calculate the minimum truck: in each transport line is equipped with the transport line can accommodate up to the number of trucks, then a vehicle to reduce each shovel places the number of trucks, until a transport line can not meet the transport volume, it needs right now the number of trucks is needs the least number of trucks, this can be let the computer is realized through a cyclic algorithm。 Finally calculated results for 7 excavator, respectively, in a spade bit (1, 2, 3, 4, 8, 9, 10), the total volume for 8。5217 million tons of。 A total of 17 trucks were required, the number of each shovel truck was (2, 4, 2, 2, 0, 0, 0, 3, 2, 2)。
For the principle 2, we can solve the problem on the basis of the principle 1。 After finding out a result, the number of existing trucks can be compared with the number of trucks, and constantly modify the conditions, so that the number of existing trucks equal to the number of trucks。 At the same time to consider the priority of rock yield, only need to meet the requirements of the ore to meet the minimum requirements。 The final result is that the total volume of(2,6,0,3,2,0,0,3,2,2)。
Keywords: Multi-objective Programming; Combinatorial Optimization; Nonlinear Optimization
目 录
第一章 绪论