第三章 模型的建立和求解

3。1符号定义

文中使用的符号说明如下:

卸点和铲位之间的运输量

卸点和铲位之间的距离

铲位的最大矿石产量

铲位的最大岩石产量

铲位的矿石平均铁含量

卡车速度

平均装车时间

所有矿石卸点集合

车辆总数

卸点的数量

电铲车的数量

铲位的数量

一个班次的时间

卸点i的产量要求

一辆卡车的载重量

平均卸车时间

所有岩石卸点集合

3。2模型建立

由于已知各个卸点和铲位之间的距离(公里),将他们结合在一起作为距离矩阵,记为:

3。2。1建立规则1的模型文献综述

假设铲位数要比电铲数量大,即:

建立目标函数

根据生产计划的要求进行规划:

1、产量要求:卡车运送的岩石矿石不低于卸点的产量要求,即

                       

2、质量要求:各个卸点对矿石的品质有要求,而且在一个班次内需要达到含量需求。卸点运送的矿石总量为,含铁量为,可以得到不等式:

                   

3、铲位的矿石数量限制:各个铲位的矿石原料数量有限,运送的数量不能超过铲位拥有的数量。对于任意铲位有:

       矿石数量限制:     

       岩石数量限制:     

4、工作时间限制:要求做出一个班次内的生产计划,卡车一次只能从一个铲位装载石料,所以对于一个铲位,由于卡车的载重量是已知的,铲位的石料总量也是已知的,所以可以求出完成一个铲位的运输任务的需求时间。铲位的矿石数量为,车次为,将铲位和卸点之间的路线所能容纳的车辆数定义为,所以卡车在某一线路上的来回时间为,所以完成总运量的运输时间为:

 由于对时间的要求不高只需要求出车次,所以并不需要取整。时间的限制要求为:

综合以上不等式条件,利用线性规划可以求解目标函数,并得到对应的卸点和铲位之间的运输量。

这时候得到的是每条线路上需要的卡车数量,为了求出最小卡车数量,先讨论电铲数量小于铲位即的情况,因为要求出总运量最小,所以先闲置某一铲位。

先求出,找到最小值对应的铲位,闲置该铲位。这时候有个铲位需要分配。再按照之前的方法重新计算最优解,不断的重复该方法直到铲位数等于电铲数。

然后求解每条线路上分配的卡车数量。再一个铲位上,卡车运输的时候根据来分配。越大该线路优先。首先在这个铲位上分配最大的卡车数量,观察是否可以在规定时间内完成。然后递减卡车数量,直到某一个铲位的卡车数量不能满足需求。这个过程可以让计算机求解。将求解的最小卡车数量设为。由于运输时间总和要小于一个班次的时间,所以铲位需要的车辆数为。这样可以求出最小卡车数量。然后可以分配一个比较合理的生产计划,每条线路上均确定以后,就可以求解出具体的卡车运输次数。来;自]优Y尔E论L文W网www.youerw.com +QQ752018766-

具体的排车计划要满足一些原则:

1、每条路线上最多只能有3辆车;

2、从铲位到卸点的路程最短

3、先排和其他铲位卸点关联度最小的线路上的车次

4、每辆车的路程尽可能最短。

上一篇:投资者过度自信与股票收益率的关系研究
下一篇:Hermite矩阵和Neumann矩阵迹及其应用

浅谈中学数学函数最值问题的求解方法

基于决策树算法的篮球联赛预测

数形结合在中学数学中的...

浙江省工业企业发展的因子分析

中美小学数学课堂教学的比较

杭州历年中考三角形的题型分析

论数形结合在中学数学教育中的应用

互联网教育”变革路径研究进展【7972字】

老年2型糖尿病患者运动疗...

LiMn1-xFexPO4正极材料合成及充放电性能研究

新課改下小學语文洧效阅...

安康汉江网讯

麦秸秆还田和沼液灌溉对...

张洁小说《无字》中的女性意识

ASP.net+sqlserver企业设备管理系统设计与开发

我国风险投资的发展现状问题及对策分析

网络语言“XX体”研究