摘要:本实验探讨了功能内生细菌Pn2在黑麦草体内的定殖对其吸收土壤中菲(100 mg•kg-1)、芘(50 mg•kg-1)的影响。结果表明,与不接菌相比,接种功能内生细菌Pn2培养30 d后,未污染和污染土壤中黑麦草茎叶生物量明显增加了18.31% 和30.53% 。同时,接种功能内生细菌Pn2的植物根中菲和芘的浓度分别为39.20mg•kg-1、78.25 mg•kg-1,茎叶中菲、芘的浓度分别为5.50mg•kg-1、8.94 mg•kg-1,均低于不接菌的空白对照组。此外,接种功能内生细菌Pn2的植物根中菲和芘的积累量分别减低了11.00%、15.15%,茎叶中菲和芘的积累量分别减低了7.76%、16.67%。该研究证明,接种功能内生细菌Pn2能够有效地增加植物地上部分的生物量,减低植物根和茎叶对土壤中菲和芘的积累,从而减轻植物PAHs污染风险,为植物利用功能内生细菌规避有机污染提供了理论依据。26213 毕业论文关键词:多环芳烃;功能内生细菌;定殖;降解
Effects of plant endophytic bacteria Pn2 on plant uptake of PAHs in plants
Abstract: In this study, we investigated the effects of the endophytic bacteria Pn2 on the absorption of phenanthrene (100 mg • kg-1) and pyrene (50 mg • kg-1) in the ryegrass.The results showed that the inoculation of endophytic bacteria Pn2 could effectively increase the biomass of plant aerial parts and reduce the accumulation of phenanthrene and pyrene in the soil roots and stems and leaves, thus alleviating the risk of plant PAHs pollution to avoid the organic pollution provides a theoretical basis. In this study, we chosen greenhouse experiments to investigate the colonization of PAH-degrading endophytic bacterium Massilia sp.Pn2 in plants and the influence of strain Pn2 on the uptake and degradation of PAHs by plants. The concentration of phenanthrene and pyrene in the soil are 100 and 50 mg•kg-1. The Biomass of ryegrass are increased by 18.31% and 30.53% in the endophyte-inoculated soil. About 74.20%-75.08% and 50.65%-51.75% phenanthrene and pyrene are disappeared in the soil after 30 days. The concentration of phenanthrene in the root and shoot are 39.20 and 5.50 mg•kg-1 in the endophyte-inoculated soil and the concentration of pyrene in the root and shoot are 78.25 and 8.94 mg•kg-1 in the endophyte-inoculated soil, which is higher than the ryegrass planted in the soil without endophyte-inoculated. Otherwise, the accumulation of phenanthrene and pyrene in the root and shoot are reduced by 11.00%、15.15% and 7.76%、16.67% in the endophyte-inoculated soil.
Key words: Polycyclic aromatic hydrocarbons (PAHs); Endophytic bacteria; Colonization; Degradation
目 录