摘要:运用沉淀法制备BiOI和BiOI/CNTs复合光催化材料,用X-射线粉末衍射(XRD)和扫描电镜(SEM)对复合光催化材料进行表征。以抗生素中的盐酸四环素为降解对象,以钨灯为光源,在不同的盐酸四环素浓度、光照强度、反应时间、催化材料用量四个条件下来研究BiOI和BiOI/CNTs对盐酸四环素的降解效果。研究结果表明:600W钨灯、反应时间90min、催化材料用量0.04g(50mL)、四环素浓度0.004mg/mL条件下BiOI/CNTs降解效果可以达到71.57%,而BiOI的降解率只达到56.91%。整体上BiOI/CNTs降解效果高于BiOI。40367 毕业论文关键词:BiOI/CNTs;碳纳米管;沉淀法;新型复合光催化材料;抗生素
Reach on Novel Photocatalyst Composite Material on Degradation of Antibioticsin Waters
Abstract:The BiOI and BiOI/CNTs novel photocatalyst composite material were prepared by means of precipitation method. The morphology, structure of the photocatalysts were charactered using a number of analytical instumentations including X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Tetracycline hydrochloride as the degradation object, the tungsten lamp as the light source, the effects of BiOI/CNTs and BiOI on the degradation of tetracycline hydrochloride were studied by four conditions of tetracycline concentration, light intensity, reaction time and catalystdosage. The results show that: The degradation effect of BiOI/CNTs can reach 71.57% under the four conditions, for example: tungsten lamp open on 600W, reaction time is an hour and a half, photocatalyst is 0.04g, the concentration of tetracycline is 0.004mg/mL, but the BiOI only reach 56.91%. The overall degradation rate of BiOI/CNTs is higher than BiOI.
Key words: BiOI/CNTs; Carbon nano-tubes; Method of precipitation; Novel photocatalyst composite material; Antibiotics
目 录