4.2 1.1

非均质炸药的冲击起爆原理目前公认为冲击作用在炸药中产生热点,使炸药分解,引起反应爆炸。对于这种起爆方式,可采用Lee Tarver模型来描述[27,28]。在这个模型里,炸药的冲击起爆过程被分为点火和成长两个过程:点火项中引进了未反应炸药受冲击后的相对压缩度,成长项中的成长系数可随入射冲击波压力而改变。就上述假设的反映率方程可写为:

(3.2)

其中,,λ是反应进程变量,I、G、Z均为常数,为炸药的初始比容,为受冲击后尚未反应的炸药比容,表示未反应炸药的相对压缩度。等式右边第一项表示热点的形成,并由热点引起反应。第二项表示反应的增长,常数G可随输入冲击波的压力而改变,项代表层流燃烧率对压力的依赖关系。

用F表示为未反应的固体炸药的质量分数,定义为

(3.3)

B炸药的Lee Tarver状态方程参数如表3.2所示。

表3.2 B炸药的Lee Tarver方程状态参数

材料 I(μs-1) G Z

COMPBJJ1 44 200 1.6

3.3.2  铝环

Mie-Grüneisen状态方程是常用的一种固体在冲击波高压条件下的物态方程,被广泛地使用来描述材料冲击压缩后的状态。铝环采用Mie-Grüneisen方程:

(3.4)

其中,C为曲线的截距;S1,S2,S3是曲线斜率的系数;是Grüneisen系数;a是对的一阶体积修正;。两种材料的Grüneisen状态方程参数如表3.3所示:

表3.3材料的Grüneisen状态方程参数

材料 ρ(g/cm3) c(km/s) S1 S2 S3

Al 2024 2.785 5.328 1.338 0 0 2

3.3.3  铜飞片

对于铜飞片,用Johnson-Cook模型描述其本构关系(应力与应变、应变率、温度等)。Johnson-Cook模型常用于描述金属材料在大变形、高应变率和高温情况下的行为,其具体形式为:

(3.5)

式中,Y为屈服应力,p表示等效塑性应变,=/为无量纲的等效塑性应变率(一般取为1.0s-1),TH为模型中的温度项。A、B、C、m、n均为于材料相关的材料参数,由试验确定。A为低应变率条件下材料的初始屈服强度,B和n为材料应变强化系数,C和m分别代表应变率参数和温度参数。Troom为参考温度(一般取室温),Tmelt为常态下材料的熔化温度。铜的Johnson-Cook模型参数列在表3.4中。

表3.4铜的Johnson-Cook模型参数

材料 ρ(g/cm3) A(MPa) B(GPa)

上一篇:爆炸成形弹丸(EFP)飞行稳定性研究
下一篇:300 mm单室双推火箭发动机设计

密集光波分复用系统的波...

優化的Morlet小波旋转机械...

solidworks波浪能浮标发电装置的设计

20KW半悬浮式波浪能装置详细设计+CAD图纸

平面磨削台式砂带机设计+答辩PPT

MOOG主动波浪补偿吊机控制系统设计+CAD图纸

MACS波浪补偿平台控制系统设计+CAD图纸+源程序

中国学术生态细节考察《...

C#学校科研管理系统的设计

医院财务风险因素分析及管理措施【2367字】

志愿者活动的调查问卷表

10万元能开儿童乐园吗,我...

国内外图像分割技术研究现状

AT89C52单片机的超声波测距...

承德市事业单位档案管理...

神经外科重症监护病房患...

公寓空调设计任务书