拓扑空间 称为Hausdorff空间,若对其中任意互异两点,存在无交的邻域(称之为Hausdorff分离公理)。此外, 称为局部紧的,若其中任一点都存在具有紧闭包的邻域。
定理:拓扑空间中凡紧集的闭子集皆是紧集
定理:设 为Hausdorff空间, 为其紧子集且 ,则存在 的邻域  和包含 的开集 ,使得  。
若将 视为 的邻域,则上述定理可作为Hausdorff分离公理的推广(有限集是紧集)。因 ,故由开集公理知:Hausdorff空间中凡紧子集必是闭集。再由上一定理可得推论:Hausdorff空间中任意多个紧集的交仍是紧集。此外,拓扑空间中有限个紧集的并仍是紧集。
上一篇:电信套餐优惠定价问题研究
下一篇:直纹面及其应用+文献综述

中美高中几何教学内容比...

中小学数学教材衔接研究...

中美初中数学教科书数与...

函数与不等式的关系研究

高中数学人教A版与北师大...

人教版华师大版中学数学...

圆锥曲线的性质及其应用椭圆与双曲线

公寓空调设计任务书

中国学术生态细节考察《...

神经外科重症监护病房患...

志愿者活动的调查问卷表

C#学校科研管理系统的设计

国内外图像分割技术研究现状

10万元能开儿童乐园吗,我...

承德市事业单位档案管理...

医院财务风险因素分析及管理措施【2367字】

AT89C52单片机的超声波测距...